COMMUNICATION

A Chemical Device That Exhibits Dual Mode Motions: Dynamic Coupling of Amide Coordination Isomerism and Metal-Centered Helicity Inversion in a Chiral Cobalt(II) Complex

Hiroyuki Miyake,* Masahiro Hikita, Masumi Itazaki, Hiroshi Nakazawa, Hideki Sugimoto, and Hiroshi Tsukube^[a]

Dynamic and consecutive molecular motions such as stretching, winding, and rotation are observed in nature. The ATP-driven F1 part of ATP synthase^[1a] and the bacterial flagellar motor^[1b] are typical examples, in which some external stimuli kick-off such events through conformational changes of biopolymers. Several molecular machines such as molecular rotors, gears, and shuttles have recently been developed, in which metal-coordination linkage isomerizes dynamically to offer single mode motion.^[2] Since the planar amide linkage (-CO-NH-) has two preferred structures (cistrans isomers) and two different metal coordination modes (O-coordination and N-coordination),^[3] its isomerism is often used to alter the three-dimensional structures of biological proteins. Herein, we develop a chemical device based on a chiral Co^{II} complex that exhibits dual mode motions. The ligand employed here (H₂L1) includes 2,5-dimethoxy benzene moieties attached through amide linkages to both terminals of a helical tetradentate ligand. The acidbase reaction of the corresponding cobalt complex triggered the interconversion of coordinating atoms between amide nitrogen atoms and amide oxygen atoms, giving rise to a stretching (extension/contraction) molecular motion. Since we previously demonstrated that the helicity of the Co^{II} complex with H_2L2 was dynamically inverted from the Λ *cis*- α form to the Δ *cis*- α form by adding achiral NO₃⁻ ions,^[4-6] the employed H_2L1 -Co^{II} complex was designed to work as a novel type of molecular machine that exhibits coupled stretching and inverting motions. Several types of

 [a] Prof. H. Miyake, M. Hikita, Dr. M. Itazaki, Prof. H. Nakazawa, Dr. H. Sugimoto, Prof. H. Tsukube
Department of Chemistry, Graduate School of Science
Osaka City University, 3-3-138, Sumiyoshi-ku
Osaka 558-8585 (Japan)
Fax: (+81)6-6605-2522
E-mail: miyake@sci.osaka-cu.ac.jp

Supporting information for this article is available on the WWW under http://www.chemistry.org or from the author.

helical ligands have shown extension/contraction molecular motion on metal complexation/decomplexation^[2d-e,7] and/or protonation/deprotonation,^[7,8] but the present type of kinetically labile Co^{II} complex allows a dual molecular motion in a highly dynamic fashion, as would be required for a sophisticated supramolecular switching device.

As established for the H_2L2 -Co(ClO₄)₂ complex,^[4] X-ray analysis of the pink-colored H₂L1-Co(CF₃SO₃)₂ complex^[9,10] and its solid-state CD studies^[11] revealed that the complex had a Λ cis- α coordinated structure, in which two amine nitrogen atoms, two amide oxygen atoms, and two donors from solvent molecules and/or counter anions coordinated (see extended Λ -form in Figure 1, middle). ¹⁹F NMR^[12] and IR^[13] studies in acetonitrile/chloroform (1/9) indicated that one CF₃SO₃⁻ ion coordinated to the Co^{II} center, and one CF₃SO₃⁻ ion remained noncoordinated, as observed in the solid state. Its diastereomeric excess (de) value in the solution was determined to be above 95% on the basis of paramagnetic ¹H NMR spectra.^[14] A green-colored Co^{II} complex was isolated by mixing H_2L1 and $Co(ClO_4)_2 \cdot 6H_2O$ in the presence of two equivalents of $(C_2H_5)_3N$, and showed a characteristic CD spectrum in CH₃CN (see contracted A-form in Figure 1, left).^[15] Two amine nitrogen, two amido nitrogen, and two methoxy oxygen atoms from the ligand coordinated to the Co^{II} center, to give overall a distorted octahedral geometry with contracted left-handed helical structure ($\Lambda_4 \Delta_2$ absolute configuration between the skew chelate pairs^[16]). In the ¹H NMR spectrum recorded in $CD_3CN/CDCl_3$ (1/9), all signals appeared in the region $\delta = -70$ to 110 ppm with C_2 -symmetric patterns (see Figure S5 in the Supporting Information). Since no significant signals for the minor diastereomeric isomer were observed, it appears that this complex retains the contracted helical structure in the solution. The [Co(L1)] complex exhibited positive CD signals at 433 and 918 nm and negative signals at 474, 607, and 1100 nm in $CH_3CN/CHCl_3$ (1/9; Figure 2, \bullet), which has a pattern similar to that observed in the solid-state CD spectrum (see Fig-

- 5393

Figure 1. Stretching and inverting dual motions of the Co^{II} complex. Crystal structures of [Co(L1)] (left) and $[Co(H_2L1)(CF_3SO_3)(H_2O)](CF_3SO_3) \cdot (CHCl_3)$ (middle), and DFT-optimized structure of $[Co(H_2L1)(NO_3)]^+$ (right) are illustrated. Most hydrogen atoms, solvent molecules, and $CF_3SO_3^-$ ions are omitted for clarity.

Figure 2. CD spectra of $[Co(H_2L1)(CF_3SO_3)(H_2O)](CF_3SO_3)\cdot(CHCl_3)$ (**u**), [Co(L1)] (**o**) and $[Co(H_2L1)(CF_3SO_3)(H_2O)](CF_3SO_3)\cdot(CHCl_3)$ in the presence of five equivalents of Bu₄NNO₃ (\odot) in CH₃CN/CHCl₃ (1/9) at room temperature. $[complex] = 2.5 \times 10^{-3} \text{ mol dm}^{-3}$, 10 mm cuvette.

ure S2 in the Supporting Information). Upon addition of two equivalents of N,N,N',N'-tetramethyl-1,8-naphthalenediamine (proton sponge) to the solution of the [Co(H₂L1)- $(CF_3SO_3)(H_2O)]^+$ complex, the color of the solution changed from pink to green after stirring for 10 min, and its CD spectrum also changed to that observed for the [Co(L1)] complex.^[17] When two equivalents of CF₃SO₃H were added to the green-colored solution, the color of the solution changed rapidly (ca. 5 s) to pink, and the sign of the CD signal appearing around 530 nm changed from approximately zero to positive (Figure 2, ■). Thus, protonation/deprotonation induced a stretching motion by means of amide coordination isomerism (amide N-coordination \leftrightarrow amide O-coordination). Since no significant decrease of CD intensity was observed after repeating the protonation/deprotonation several times (see Figure 3, ■), this stretching (extension/contraction) motion occurred reversibly.

Addition of five equivalents of Bu_4NNO_3 to the solution of the extended $[Co(H_2L1)(CF_3SO_3)(H_2O)]^+$ complex gave rise to a negative CD signal around 530 nm (Figure 2, $_{\odot}$),

Figure 3. Protonation/deprotonation-induced reversible switching of the contracted- Λ /extended- Λ (**•**) and contracted- Λ /extended- Δ ($_{\odot}$) process observed by CD spectra at 535 nm in CH₃CN/CHCl₃ (1/9). H⁺: CF₃SO₃H; base: 1,8-bis(dimethylamino)naphthalene.

which was similar to that of the right-handed Co^{II} complex with H₂**L2**.^[4] As previously established, bidentate chelation of the NO₃⁻ ion to the Co^{II} center and hydrogen bonding of the NO₃⁻ ion to the amide hydrogen atom cooperatively stabilized the Δ -form (see contracted Δ -form in Figure 1, right). A similar negative CD signal was observed when both two equivalents of CF₃SO₃H and five equivalents of Bu₄NNO₃ were added to the contracted [Co(**L1**)] complex, indicating that the contracted structure was extended, then its helical direction was inverted.^[18]

As demonstrated above, the linkage isomerism of the amide group in the octahedral metal complex provides dynamic molecular motion between two distinct structures (contraction/extension), in which the distance between two coordinated methoxy oxygen atoms was changed from 0.3 nm to 1.3 nm. Furthermore, the direction of two coordinated methoxy groups (O-CH₃) was changed dramatically (Figure 1). Since the helical direction of the extended complex was further inverted in response to the NO₃⁻ ion, both stretching and inverting motions occurred reversibly and re-

peatedly (Figure 3). Thus, our complex can be considered as a new class of chiral device that exhibits dual mode motions in response to two different external stimuli.

Experimental Section

H₂L1: A solution of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (WSC·HCl) (1.81 g, 9.46 mmol) in DMF (90 mL) was added at 0°C to a solution of *N*,*N*'-ethylene-bis(*N*-methyl-(*s*)-alanine) (**1**;^[19] 1.00 g, 4.30 mmol) and 1-hydroxybenzotriazole hydrate (HOBt·H₂O) (1.45 g, 9.46 mmol) in DMF (60 mL), and the solution was stirred for 30 min. A solution of 2,5-dimethoxyaniline (1.45 g, 9.46 mmol) in DMF (2 mL) was added, and the solution was stirred overnight, during which time the temperature of the solution was allow to rise to room temperature (Scheme 1). After the solvent was removed in vacuo, the residue

Scheme 1. Synthesis of H₂L1.

was dissolved in chloroform (30 mL) and washed with saturated Na₂CO₃ aqueous solution (3×10 mL), then the organic phase was dried over anhydrous Na_2SO_4 . The solution was evaporated, and the product was purified by chromatography on silica gel by using toluene/chloroform/ethyl acetate (4/4/1) as eluent, and then recrystallized from methanol to give colorless H₂L1 as a single crystal (yield: 1.55 g, 3.08 mmol; 72 %). The ¹H and ¹³C NMR spectra indicated its stereochemical purity to be greater than 98% de. M.p. 161–162°C; $[\alpha]_{D}^{28} = +85.5$ (c=0.534 in CHCl₃); ¹H NMR (300 MHz, CDCl₃): $\delta = 9.84$ (s, 2H; NH), 8.13 (d, J = 2.93 Hz, 2H; 6-Ar), 6.60 (d, J=8.94 Hz, 2H; 3-Ar), 6.46 (dd, J=2.93, 8.94 Hz, 2H; 4-Ar), 3.76 (s, 6H; OCH₃), 3.67 (s, 6H; OCH₃), 3.38 (q, J=6.97 Hz, 2H; α -H), 2.65 (m, 2H; ethylene), 2.53 (m, 2H; ethylene), 2.28 (s, 6H; NCH₃), 1.30 ppm (d, J = 6.97 Hz, 6H; β -CH₃); ¹³C NMR (100 MHz, CDCl₃): δ=171.8 (C=O), 153.5 (Ar), 142.3 (Ar), 128.0 (Ar), 110.2 (Ar), 108.3 (Ar), 105.3 (Ar), 64.8 (α-C), 55.8 (OCH₃), 55.7 (OCH₃), 51.8 (ethylene), 39.1 (NCH₃), 8.58 ppm (β -CH₃); IR (KBr): $\tilde{\nu}$ =3269 (s, NH), 1682 cm⁻¹ (s, C=O); FAB-MS (NBA): m/z: 503.4, calcd for $[M+H]^+$: 503.3; elemental analysis calcd (%) for C₂₆H₃₈N₄O₆ : C 62.1, N 11.1, H 7.62; found: C 62.1, N 11.0, H 7.60.

$$\begin{split} & [\text{Co}(\text{H}_2\text{L1})(\text{CF}_3\text{SO}_3)(\text{H}_2\text{O})](\text{CF}_3\text{SO}_3)\cdot(\text{CHCl}_3): \text{ A solution of Co-}\\ & (\text{CF}_3\text{SO}_3)_2\cdot\text{5}\,\text{H}_2\text{O} \ (44.7 \text{ mg}, \ 0.100 \text{ mmol}) \text{ in acetonitrile} \ (5 \text{ mL}) \text{ was added}\\ & \text{to } \text{H}_2\text{L1} \ (50.7 \text{ mg}, \ 0.100 \text{ mmol}) \text{ and the solution was stirred for 1 h at}\\ & \text{room temperature. The solvent was evaporated, and a pink single crystal suitable for X-ray structure analysis was isolated from the chloroform solution (3 mL) on layering with toluene (2 mL) (yield 72.1 g, 0.0723 \text{ mmol};\\ & 72\%). \text{ M.p. } 208-209^{\circ}\text{C}; \ [\alpha]_{27}^{27} = +44.5 \ (c=0.210 \text{ in CH}_3\text{CN}); \text{ IR (KBr):}\\ & \bar{\nu}=3406 \ (\text{s}, \text{NH}), 1636 \text{ cm}^{-1} \ (\text{s}, \text{C=O}); \text{ FAB-MS (NBA): } m/z: 710.2, \text{ calcd}\\ & \text{for } \ [\text{Co}(\text{H}_2\text{L1})(\text{CF}_3\text{SO}_3)]^+: \ 710.2; \text{ elemental analysis calcd (\%) for}\\ & \text{C}_{29}\text{H}_{41}\text{Cl}_3\text{CoF}_6\text{N}_4\text{O}_{13}\text{S}_2: \text{ C} 34.93, \text{ N} 5.62, \text{ H} 4.14; \text{ found: C } 34.92, \text{ N} 5.57,\\ & \text{H} 4.20. \end{split}$$

[Co(L1)]: A solution of Co(ClO₄)₂·6 H₂O (224 mg, 0.639 mmol) in acetonitrile (4 mL) was added to H₂L1 (292 mg, 0.581 mmol), and the solution was stirred for 1 h at room temperature. (C₂H₅)₃N (235 mg, 2.32 mmol) was added and the mixture was left to stand overnight, which led to the formation of green microcrystals of the title complex (yield 307 g, 0.549 mmol; 94%). Single crystals suitable for an X-ray structure analysis were obtained from a solution of the complex in methanol. M.p. > 300°C; $[\alpha]_D^{27} = +315$ (c = 0.205 in CHCl₃); IR (KBr): $\tilde{\nu} = 1614$ cm⁻¹ (s, C=O); FAB-MS (NBA): m/z: 559.2, calcd for [Co(L1)]⁺: 559.2; elemental analysis calcd (%) for C₂₆H₃₆CoN₄O₆: C 55.81, N 10.01, H 6.49; found: C 55.60, N 9.91, H 6.45.

Acknowledgements

This work was partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan (No. 18350032).

Keywords: chirality • helical structures • molecular devices • N,O ligands • supramolecular chemistry

- a) Y. Hirono-Hara, K. Ishizuka, K. Kinoshita Jr., M. Yoshida, H. Noji, *Proc. Natl. Acad. Sci. USA* **2005**, *102*, 4288–4293; b) Y. Sowa, A. D. Rowe, M. C. Leake, T. Yakushi, M. Homma, A. Ishijima, R. M. Berry, *Nature* **2005**, *437*, 916–919.
- [2] a) V. Balzani, A. Credi, M. Venturi in *Molecular Devices and Machines: A Journey into the Nanoworld*, Wiley-VCH, Weinheim, Germany, 2003; b) J.-P. Collin, V. Heitz, J.-P. Sauvage, *Top. Curr. Chem.* 2005, 262, 29–62; c) S. Hiraoka, T. Tanaka, M. Shionoya, J. Am. Chem. Soc. 2006, 128, 13038–13039; d) M. Barboiu, J. M. Lehn, *Proc. Natl. Acad. Sci. USA* 2002, 99, 5201–5206; e) A.-M. Stadler, N. Kyritsakas, R. Graff, J.-M. Lehn, *Chem. Eur. J.* 2006, 12, 4503–4522.
- [3] a) H. Sigel, R. B. Martin, Chem. Rev. 1982, 82, 385-426; b) I. Sóvágó, K. Ősz, Dalton Trans. 2006, 3841-3854; c) S. Novokmet, F. W. Heinemann, A. Zahl, R. Alsfasser, Inorg. Chem. 2005, 44, 4796-4805; d) S. Novokmet, M. S. Alam, V. Dremov, F. W. Heinemann, P. Müller, R. Alsfasser, Angew. Chem. 2005, 117, 813-817; Angew. Chem. Int. Ed. 2005, 44, 803-806.
- [4] a) H. Miyake, K. Yoshida, H. Sugimoto, H. Tsukube, J. Am. Chem. Soc. 2004, 126, 6524–6525; b) H. Miyake, H. Sugimoto, H. Tamiaki, H. Tsukube, Chem. Commun. 2005, 4291–4293.
- [5] For helicity inversion of coordination compounds, see: a) H. Miyake, H. Tsukube, *Supramol. Chem.* 2005, *17*, 53–59; b) J. Gregoliński, K. Ślepokura, J. Lisowski, *Inorg. Chem.* 2007, *46*, 7923–7934; c) J. Gregoliński, J. Lisowski, *Angew. Chem.* 2006, *118*, 6268–6272; *Angew. Chem. Int. Ed.* 2006, *45*, 6122–6126; d) S. Zahn, J. W. Canary, *Science* 2000, *288*, 1404–1407; e) M. Hutin, J. Nitschke, *Chem. Commun.* 2006, 1724–1726; f) A. Company, M. Güell, D. Popa, J. B. -Buchholz, T. Parella, X. Fontrodona, A. Llobet, M. Solà, X. Ribas, J. M. Luis, M. Costas, *Inorg. Chem.* 2006, *45*, 9643–9645.
- [6] For helicity inversion of organic compounds, see: a) B. L. Feringa, R. A. van Delden, N. Koumura, E. M. Geertsema, *Chem. Rev.* 2000, 100, 1789–1816; b) K. Maeda, E. Yashima, *Top. Curr. Chem.* 2006, 265, 47–88; c) M. Fujiki, J. R. Koe, M. Motonaga, H. Nakashima, K. Terao, A. Teramoto, *J. Am. Chem. Soc.* 2001, 123, 6253–6261; d) A. L. Hofacker, J. R. Parquette, *Angew. Chem.* 2005, 117, 1077– 1081; *Angew. Chem. Int. Ed.* 2005, 44, 1053–1057; e) K. Tang, M. M. Green, K. S. Cheon, J. V. Selinger, B. A. Garetz, *J. Am. Chem. Soc.* 2003, 125, 7313–7323.
- [7] Foldamers: Structure, Properties and Applications, (Eds: S. M. Hecht, I. Huc), Wiley-VCH, Weinheim, Germany, 2007.
- [8] a) E. Kolomiets, V. Berl, J.-M. Lehn, Chem. Eur. J. 2007, 13, 5466–5479; b) C. Dolain, V. Maurizot, I. Huc, Angew. Chem. 2003, 115, 2844–2846; Angew. Chem. Int. Ed. 2003, 42, 2738–2740; c) D. Kanamori, T. Okamura, H. Yamamoto, N. Ueyama, Angew. Chem. 2005, 117, 991–994; Angew. Chem. Int. Ed. 2005, 44, 969–972; d) Z.-T. Li, J.-L. Hou, C. Li, H.-P. Yi, Chem. Asian J. 2006, 1, 766–778.
- [9] X-ray diffraction data were collected on a pink crystal of [Co- $(H_2L1)(CF_3SO_3)(H_2O)](CF_3SO_3)\cdot(CHCl_3)$ (0.30×0.10×0.10 mm) and a green crystal of [Co(L1)] (0.30×0.25×0.10 mm) on a Rigaku/MSC Mercury CCD diffractometer with graphite-monochromated

A EUROPEAN JOURNAL

 $Mo_{K\alpha}$ radiation ($\lambda = 0.71070$ Å) to a $2\theta_{max}$ of 50.0°. Data were processed on a PC using CrystalClear software (Rigaku). The crystal structures were solved by direct methods by using SIR-97 (A. Altomare, M. C. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. Spagna, J. Appl. Crystallogr. 1999, 32, 115-119) and refined by full-matrix least squares on F² using SHELXL-97 (G. M. Sheldrick, SHELXL-97; University of Göttingen: Göttingen, Germany, 1997). All hydrogen atoms except for those in the coordinating water molecule were placed at ideally geometrical positions. Non-hydrogen atoms were refined anisotropically. The absolute configuration for each complex was determined by the configuration of the ligand and Flack parameter. CCDC-670887 and CCDC-670888 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

- [10] X-ray data for $[Co(H_2L1)(CF_3SO_3)(H_2O)](CF_3SO_3)\cdot(CHCl_3):$ $C_{29}H_{41}Cl_3CoF_6N_4O_{13}S_2, M_r=997.06$, orthorhombic, space group $P2_{12_12}, a=16.9306(11), b=28.5388(17), c=8.8285(5) Å, V=$ $4265.7(4) Å^3, Z=4, \rho_{calcd}=1.553 \text{ g cm}^{-3}, \mu=0.776 \text{ mm}^{-1}, T=$ 100(2) K, F(000)=2044, 27108 reflections collected, of which 7390were unique $(R_{int}=0.0506)$. Final *R* indices [7094 observed reflections, $I>2\sigma(I)$]: $R_1=0.0547, wR_2=0.1130.$ GOF=1.271, Flack parameter=0.021(19). Highest residual electron density 0.688 e Å^{-3}.
- [11] CD spectra of $[Co(H_2L1)(CF_3SO_3)(H_2O)](CF_3SO_3)\cdot(CHCl_3)$ as a KBr pellet exhibited a positive signal around 530 nm (see Figure S1 in the Supporting Information), the sign of which was the same as that observed in solution in CH₃CN/CHCl₃ (1/9).
- [12] The ¹⁹F NMR spectrum of $[Co(H_2L1)(CF_3SO_3)(H_2O)](CF_3SO_3)$. (CHCl₃) in CD₃CN/CDCl₃ (1/9) showed only one signal at δ = 8.65 ppm versus CFCl₃, which could be assigned to a free CF₃SO₃⁻ ion. The intensity of the signal fit for one CF₃SO₃⁻ ion, suggesting that one CF₃SO₃⁻ ion on average coordinated to the Co^{II} center (see Figure S3 in the Supporting Information).^[20]
- [13] IR spectra of $[Co(H_2L1)(CF_3SO_3)(H_2O)](CF_3SO_3)\cdot(CHCl_3)$ in $CD_3CN/CHCl_3$ (1/9) showed the existence of free $CF_3SO_3^-$ and coordinated $CF_3SO_3^-$ ions (see Figure S4 in the Supporting Information).^[21]

- [14] The paramagnetic ¹H NMR spectrum of $[Co(H_2L1)(CF_3SO_3)(H_2O)]$ -(CF₃SO₃)·(CHCl₃) in CD₃CN/CDCl₃ (1/9) revealed the presence of three different species, two of which have independent C₂-symmetrical patterns (see Figure S5 in the Supporting Information). One of these species has an NMR spectrum similar to that observed in CD₃CN, in which none of the CF₃SO₃⁻ ion coordinates directly to the Co^{II} center. The other two species could be assigned as the A *cis*- α complexes, in which one or two CF₃SO₃⁻ ions coordinated to the Co^{II} center, since the CD intensity of the complex in this mixed solvent is similar to that obtained in CH₃CN.
- [15] X-ray data for [Co(L1)]: C₂₆H₃₆CoN₄O₆, M_r =559.52, orthorhombic, space group $P2_{1}2_{1}2_{1}$, a=12.1381(8), b=11.9435(7), c= 18.0180(10) Å, V=2612.1(3) Å³, Z=4, ρ_{calcd} =1.423 g cm⁻³, μ = 0.705 mm⁻¹, T=100(2) K, F(000)=1180, 16355 reflections collected, of which 4479 were unique (R_{int} =0.0273). Final R indices [4419 observed reflections, $I > 2\sigma(I)$]: R_1 =0.0542, wR_2 =0.1636. GOF=1.181, Flack parameter=0.05(3). Highest residual electron density 0.425 e Å⁻³.
- [16] M. Brorson, T. Damhus, C. E. Schäffer, Inorg. Chem. 1983, 22, 1569–1573.
- [17] Since the H₂L2-Co(ClO₄)₂ complex did not provide such a green species upon addition of a proton sponge, coordination of methoxy oxygen atoms was essential to stabilize a contracted form.
- [18] The ¹H NMR spectrum of this complex after extension by CF₃SO₃H clearly showed that almost complete inversion of helicity (Δ/Λ form = 75/25) was achieved. Upon addition of two equivalents of a proton sponge, the CD spectrum was restored to the characteristic pattern of the contracted [Co(L1)] complex (see Figure 3, \odot).
- [19] H. Miyake, H. Kamon, I. Miyahara, H. Sugimoto, H. Tsukube, J. Am. Chem. Soc. 2008, 130, 792–793.
- [20] J. H. Forsberg, T. J. Dolter, A. M. Carter, D. Singh, S. A. Aubuchon, A. T. Timperman, A. Ziaee, *Inorg. Chem.* **1992**, *31*, 5555–5560.
- [21] S. Gosiewska, J. J. L. M. Cornelissen, M. Lutz, A. L. Spek, G. van Koten, R. J. M. K. Gebbink, *Inorg. Chem.* 2006, 45, 4214–4227.

Received: April 3, 2008 Published online: April 25, 2008

5396 -